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Universal behavior of the structure of assemblies of particles irreversibly deposited
on solid surfaces
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The diffusion of Brownian particles in a gravitational field and their adhesion to a horizontal plane is
analyzed, from the point of view of both the Langevin and Smolukowski equations. It is shown that even when
hydrodynamic interactions of the diffusing particles with the collector and the preadsorbed particles are taken
into account, the structure built up by the irreversibly fixed particles and the jamming coverage are uniquely
determined by one paramefet. This latter depends solely on the radius of the particles, their density relative
to the density of the fluid, the temperature, and the acceleration of gravity. The viscosity of the fluid does not
enter into this parametefS1063-651X96)08312-3

PACS numbe(s): 82.70.Dd, 02.50-r, 68.10.Jy, 82.65:i

The irreversible deposition of particles on solid surfacesarticles diffuse in the solution before reaching the surface.
has received considerable attention both from experimentdDnce they have interacted with the surface they are, as in the
and theoretical points of view. Such processes are commoRSA model, irreversibly bound on the surface. It must be
in sedimentation and adsorption phenomena. Due to theitoted that this model neglects hydrodynamic interactions be-
irreversible character, the properties of the assemblies of déween the diffusing particles, the deposition plane, and the
posited particles cannot be described by the general laws @iready deposited spheres. It has been shown that, for all
statistical mechanics; their description requires a differenfoverages different from the jamming limit, this model leads
approach. In the present paper we will only be interested iff® @ structure of the assembly of deposited particles which is

adsorption/deposition processes in the absence of flow in tHéfferent from its RSA counterpart. It is only in the jammed
liquid in contact with the adsorbing surfadie collecto. state that both models lead to a similar structure and also to

By irreversible we denote processes in which, once théhe same coverage, within the statistical uncertainty attained

particle has “touched’(closely interacted withthe surface, In the numerical S|'mulat|onb!l'].'
N . : : However, experimentally, it is often the case that the par-
it is irreversibly fixed on it, and can thus no longer be de-

ticles are large and heavy enough that gravitational effects
. . . S QAlso play a role. The gravitational force was therefore intro-
describe both the deposition/adsorption k|_net|c_s and thﬁuced in the DRSA modéb—7]. Analysis of the problem of
structure of an assembly of spheres formed in this way, difyhe jrreversible deposition of particles under the influence of
ferent models have been developed. The first and most popyravity, taking into account the diffusion process during the
lar one is the random sequential adsorpti®SA) model  sedimentation, showed that, at a given coverage, the only
which was suggested to describe the adsorption of proteinsarameter characterizing the structure of the assembly of de-
on solid surface$l,2]. It is defined by the following rules: posited particles is the reduced radiRs given by
(i) Particles are adsorbed randomly and sequentially on the
surface(ii) In an adsorption trial, the position of the particle
is chosen randomly and uniformly over the surfa@e) If R* =R(
this particle overlaps with already deposited ones, the trial is
rejected and an independent one is started. Otherwise, the
particle is irreversibly fixed on the surface. While this modelwhereR represents the radius of the particlag;the relative
captures the irreversible nature of the deposition process, aensity, i.e., the difference in density between the particles
well as the excluded surface effects due to the depositednd the surrounding liguid mediung the acceleration of
particles, it does not take the diffusion of the particles in thegravity, andkT the thermal energy. This parameter also
vicinity of the collector into account during the deposition characterizes the jamming limit of this system. Physically,
process. To account for this effect, the Diffusion RSAR*“can be interpreted as the work of the gravitational force
(DRSA) model has been introducgd,4]. In this model the necessary to change the altitude of the particleRyyex-
pressed in units of the thermal enellgy. It should be noted
that the viscosity of the surrounding medium does not enter
* Author to whom correspondence should be addressed.(Bax: into this dimensionless parameter. However, this result was
(0)3 88414099. Electronic address: schaaf@ics-crm.u-strasbg.fr found for the DRSA model with gravity, in which hydrody-
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namic interactions are neglected, and might be supposed to DF
apply only to this particular case. Ar= T
The aim of this Brief Report is to give a strong argument

which indicates thaR* is also theonly parameter needed to Thjs vectorial equation gives the displacement of the particle
describe both the structure at a given coverage and the jangyring the time intervalt. The three terms on the right hand

ming limit for real systems in which hydrodynamic interac- gjge represent, respectively, the drift term, the gradient term,
tions are present, with the restriction that the particles inter- =

act, aside from the hydrodynamic interactions, as hardand the stochastic ternD represents the diffusion tensor,

o . T which reduces to the scalar Stokes-Einstein diffusion coeffi-
spheres; i.e., in the equilibrium case, the system would be. . ;
CfentDS, when the particle diffuses far from walls or other

described by an ensemble of hard spheres. This result is Particles. In that case, obviously, the gradient term vanishes.

great importance because hydrodynamic interactions, are aj-_ .. . . ;
ways present and, as has been demonstrated, they play ane first term on the right hand side contains the sum of all

important role in the structure of the deposited particles. | external forces acting on the particle; in the present study,

fact, the DRSA model predicts that, for particles, in the al r-][h's force 'S simply the_ gravitational forpe which is parallel
and opposite to the unit vector of tlzeaxis.

sence of any gravitational force, the structure is different In the particular case of constant diffusion coefficient, Ez-

from its RSA counterpart. However, introducing the hydro- . e :
dynamic interactions, one recovers a deposition probabilityéi?t?élnee?:] 2'523?;?0?12?\%;??; :ahn(?[i?;fl;ufjlgtgror;; :ght?;'fﬁé
as a function of the adhesion position, which follows thereduced radiu&*, defined by Eq(1). The same observation

RSA laws[8]. This comes from the fact that, due to the ) LD
- : e - holds for the coverage at the jamming limit. We shall now
hydrodynamic interactions, the diffusion coefficient related : . e
show that this conclusion stays true even when the diffusion

to the movement parallel to the deposition plane decreasei‘g a tensor instead of a scalar, i.e., in the presence of hydro-
more slowly with the plane-particle distance than the diffu- Y P y

sion coefficient related to the movement perpendicular to thgyr(l:aorgg:i dvear”f?rzltetr?;agiéorlceist.case of a particle sedimentin
plane. The particle can thus “randomize” its position along. P P 9

e o . in a liquid and approaching a free horizontal colledtb®].
the plane before touching it. This is equivalent to the RS. e have only to consider the modification of the mobility of

deposition rule in which the deposition probability is uni- the particle due to the presence of the plane. Following

form all over the available space. e
Let us now develop the argument showing that the dimenplark’ Lal, and Watsof9] (see alsq11])), the diffusion ten-

sionless radiuRk* given by relation(1) also describes a sys- sor Is written as
tem in which hydrodynamic interactions are present. To this M_l 0 0

At+V.DAt+Arg. 3)

end, consider a monodisperse system of hard spheres depos- b=pl o A7' o @)
ited irreversibly on a plane. This system is characterized by a S s 0 2) ! ’
given structure and by its coverage. In order to determine the L

deposition probability for a new incoming particle as a func-
tion of the adhesion probability, two routes can be followed:
the first is based on Langevin's equation, the second o
Smolukowski's equation. Both are discussed below.

(1) We can choose a random initial position for the de-
positing particles in a plane parallel to the deposition plane aéqua’cions corresponding to the three components of the dis-
a large distance above this plane. We can then follow th‘?:)lacement vectoAr. we obtain
trajectory of this particle by solving, step by step, a Langevin '

where ), and \, account for the effect of the wall on the
diffusion of the particle parallel to it and perpendicular to it,
Pespectively. These components are functions of the unique
dimensionless variabl2'R.

If we split the vectorial equatior{3) into three scalar

equation with a diffusion tensor which varies with the rela- AX= 7y, /ZDsM_lAL (59)
tive position of the depositing particle with respect to the
deposition plane and to the already deposited particles. Once Ay=7y,\2D\; TAt, (5b)

the particle has touched the surface it is removed from it, and

a new deposition trial is started independently. If such a pro- EL oL

cedure is repeated a great number of times, one obtains the Az=D, L At+Dg L At+ fyZW/ZDS)\IlAt_
deposition probability. The Langevin equation must be kT 9z

solved with the constraints that the particles behave like hard

spheres. This is the route which has been followed in theq,, gradient term does not contribute to thendy dis-

DRSA case with gravity, taking the hydrodynamic tensor as,|,cements, i.e., the displacements parallel to the adsorbing
a constant scalar given by the usual Stokes-Einstein formul lane.  since N\, depends only on z[(o\ H—l/ax)

=(oN H‘llay)=0]. The three components of the stochastic
term Arg are still assumed to be norm@aussiapdeviates,
_ kT 2 with means equal to zef@]. They are obtained by multiply-

s 6myR’ ing normal deviates of zero mean and unit standard devia-
tion, ¥, 7y, andy,, by the appropriate standard deviations,
that depend o4 and the componerK; or \, . Finally, the

where 7 represents the viscosity of the medium. drift term appears only in Eq5¢), since thez axis coincides
When the diffusion tensor depends upon the position ofvith the vertical(ascending direction. The vertical projec-
the particle, the Langevin equation takes the f¢&h tion of the gravitational force i§,= —(4/3)mR3Apg. The

(50



6964 BRIEF REPORTS 54

minus sign accounts simply for the fact that the gravitational D= KT( g)fl_ ®)
force pulls the particle downward, i.e., tends to reduce its

altitude z. Using R as the unit of length an&”/D; as the  Again, using the approximation of the additivity of the fric-
unit of time, Egs.(58—(5¢) may be recast in the following tion tensors, approximate formulas can be obtained for the

form: friction tensor for the whole distance range between the dif-
_ fusing particle, the fixed particles on the surface, and the
AX' =y 2N AL, (6@  deposition plane. These formulas lead to the Stokes expres-
sion when the diffusing particle is far from the surface, and
Ay'=yy\N2N A, (6b) include the lubrication theory for diffusing particles near the

deposition plane. The interesting feature that appears out of

ONTt these expressions is that the diffusion tensor can be written
AZ' =—R*\['At'+ azl, At'+y,\2 A, (60 in the simple form
where a primed symbol represents a dimensionless spatial or D=DF({(ri—n/R}), ©)

time step. These equations show that, once the timestep L .
is chosen, the evolution of the system is completely deter\-'\lhereri_r represen_ts.the vector_jplnlng the positignof
mined byR*, exactly as in the case where the drag force waéhe center of th_e partl_clleto the _posmorr. The tensoF thus
considered as independent of the particle position, since thg presents a d'me”S'O.”'?‘SS diffusion tensor, It can be noted
tensor components, and\, depend only ore’. t at the on_Iy chargcterlstlc length entenng_lnto th|s_pro_blem
It may be noted that if one considers the sphere-spher'@ the_ partlc]e rad.|usR. Qne can then rewrite the diffusion
interaction from the hydrodynamic point of vielt2], the €quation(?) in a dimensionless form,
diffusion tensor again can be written as the product of
Stokes-Einstein diffusion coefficient and a tensor whose el- — =v"'.
ements depend solely on the center-to-center distance of the at
two spheres. Here also, the movement can be rescaled usi
R as the unit of length, anR?/Dy as the unit of time.
Finally, in order to face the more complicated problem o
a particle diffusing in the vicinity of a collector already par-
tially covered by irreversibly fixed spheres, one may assum
the additivity of the friction tensori8,13]. Since the separate
tensors depend only on distances that can be expressed
multiples ofR, their combination is a tensor depending only
on the geometry of the system, provided tlat has been
factorized everywhere. Then the resulting movement and t
resulting structure of the assembly of particles will display
universal behavior determined IR* and onlyR*. This de-

ri r
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\r)v%ere V' represents the derivative with respect to the re-
gscaled variable/R, andt’ =D/R? is the dimensionless re-
scaled time. The same rescaling can be done on the boundary
onditions, which can be exclusively expressed in terms of
the rescaled lengths due to the fact that no additional length
ers the problem. Since the change in the structure due to a
change in coverage can be obtained by solving #@) in
steady state conditions with the appropriate boundary condi-
h[:;\ons expressed exclusively in rescaled dimensions, the only
gParameter that enters into the problem is the dimensionless
radius R* given by Eq.(1). Moreover, the kinetics of the
pends only on the assumption of additivity for the friction Process 1S o_btalned by so_lvmg EQLO) with the boundar_y_
conditions discussed previously. These boundary conditions

tensors.
(2) The second route which can be followed is to solve_thus only depend on the coverage and the structure of the

the Smoluchowski equation corresponding to the diffusion'merface' This latter, however, IS only dependent upon the
sedimentation process. One takes the concentration of tHgVerage gnd .the parame‘?’f’ as just dlscusged. The depo-
particles constant at a plane parallel to the deposition surfacdtion kinetics is then obtained by the equation

far above it. The boundary conditions at the interface are the Jp

following: the flux is zero perpendicularly to the deposited —=J(z'=0), (12)
particles(reflecting boundary conditionsand the concentra- ot z

tion of the particles is zero at the surfagerfectly adsorbing ,

boundary condition By solving the steady state problem, WhereJ,,(z'=0) corresponds to the rescaled flux to the sur-
one can calculate the adsorption flux toward the surface asface atz'=0. This rescaled flux is given by

function of the adsorption position and thus evaluate the

" i . ) _lror
deposition probability. The Smoluchowski equation takes the J;,(z’ —0)= < [ F(—', _) (V'P— PR*“uZ)] > ,
form R’'R _
z2,2'=0 12)
P = 47R3Apg (
E_V' D-|VP-P 3kT Y7 | @) where the average is taken over the entire surface, and the

symbol{}, =0 means that only the component of this
whereP is proportional to the concentration of particles atvector, i.e., the component of the flux perpendicular to the
the positionr, andD represents the diffusion tensor which surface, is taken a’'=0. The fact that the flux toward the
depends also upon the positian.represents the unit vector surface can be rescaled in this way implies that the deposi-
parallel to the gravitational field. The diffusion tensor is re-tion kinetics is governed by two parameters: the rescaled
lated to the inverse of the friction tensor by the EinsteinradiusR* and the dimensionless tin?/Dy.
relation The two main conclusions that arise from the above
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analysis of sedimentation of Brownian particles and of theirpertinent physical parameters; afiid that the kinetics of the
adhesion to an horizontal plane, taking into account hydroeoverage process depends &1 and also on the ratio
dynamic interactions with this plane and with preadsorbedR?/Ds. In other words, the viscosity of the solvent changes
particles, argi) that the structure of the adsorbed layer, asthe time necessary to obtain a given coverage, but not the
for instance quantified by the radial distribution function, relative position of the particles at the interface between the
depends only on the reduced radi@s which contains all solid and the particle suspension.
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