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The diffusion of Brownian particles in a gravitational field and their adhesion to a horizontal plane is
analyzed, from the point of view of both the Langevin and Smolukowski equations. It is shown that even when
hydrodynamic interactions of the diffusing particles with the collector and the preadsorbed particles are taken
into account, the structure built up by the irreversibly fixed particles and the jamming coverage are uniquely
determined by one parameterR* . This latter depends solely on the radius of the particles, their density relative
to the density of the fluid, the temperature, and the acceleration of gravity. The viscosity of the fluid does not
enter into this parameter.@S1063-651X~96!08312-2#

PACS number~s!: 82.70.Dd, 02.50.2r, 68.10.Jy, 82.65.2i

The irreversible deposition of particles on solid surfaces
has received considerable attention both from experimental
and theoretical points of view. Such processes are common
in sedimentation and adsorption phenomena. Due to their
irreversible character, the properties of the assemblies of de-
posited particles cannot be described by the general laws of
statistical mechanics; their description requires a different
approach. In the present paper we will only be interested in
adsorption/deposition processes in the absence of flow in the
liquid in contact with the adsorbing surface~the collector!.

By irreversible we denote processes in which, once the
particle has ‘‘touched’’~closely interacted with! the surface,
it is irreversibly fixed on it, and can thus no longer be de-
sorbed from the surface nor diffuse along the surface. To
describe both the deposition/adsorption kinetics and the
structure of an assembly of spheres formed in this way, dif-
ferent models have been developed. The first and most popu-
lar one is the random sequential adsorption~RSA! model
which was suggested to describe the adsorption of proteins
on solid surfaces@1,2#. It is defined by the following rules:
~i! Particles are adsorbed randomly and sequentially on the
surface.~ii ! In an adsorption trial, the position of the particle
is chosen randomly and uniformly over the surface.~iii ! If
this particle overlaps with already deposited ones, the trial is
rejected and an independent one is started. Otherwise, the
particle is irreversibly fixed on the surface. While this model
captures the irreversible nature of the deposition process, as
well as the excluded surface effects due to the deposited
particles, it does not take the diffusion of the particles in the
vicinity of the collector into account during the deposition
process. To account for this effect, the Diffusion RSA
~DRSA! model has been introduced@3,4#. In this model the

particles diffuse in the solution before reaching the surface.
Once they have interacted with the surface they are, as in the
RSA model, irreversibly bound on the surface. It must be
noted that this model neglects hydrodynamic interactions be-
tween the diffusing particles, the deposition plane, and the
already deposited spheres. It has been shown that, for all
coverages different from the jamming limit, this model leads
to a structure of the assembly of deposited particles which is
different from its RSA counterpart. It is only in the jammed
state that both models lead to a similar structure and also to
the same coverage, within the statistical uncertainty attained
in the numerical simulations@4#.

However, experimentally, it is often the case that the par-
ticles are large and heavy enough that gravitational effects
also play a role. The gravitational force was therefore intro-
duced in the DRSA model@5–7#. Analysis of the problem of
the irreversible deposition of particles under the influence of
gravity, taking into account the diffusion process during the
sedimentation, showed that, at a given coverage, the only
parameter characterizing the structure of the assembly of de-
posited particles is the reduced radiusR* given by

R*5RS 4pDrg

3kT D 1/4, ~1!

whereR represents the radius of the particles;Dr the relative
density, i.e., the difference in density between the particles
and the surrounding liquid medium;g the acceleration of
gravity; and kT the thermal energy. This parameter also
characterizes the jamming limit of this system. Physically,
R*4 can be interpreted as the work of the gravitational force
necessary to change the altitude of the particle byR, ex-
pressed in units of the thermal energykT. It should be noted
that the viscosity of the surrounding medium does not enter
into this dimensionless parameter. However, this result was
found for the DRSA model with gravity, in which hydrody-
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namic interactions are neglected, and might be supposed to
apply only to this particular case.

The aim of this Brief Report is to give a strong argument
which indicates thatR* is also theonly parameter needed to
describe both the structure at a given coverage and the jam-
ming limit for real systems in which hydrodynamic interac-
tions are present, with the restriction that the particles inter-
act, aside from the hydrodynamic interactions, as hard
spheres; i.e., in the equilibrium case, the system would be
described by an ensemble of hard spheres. This result is of
great importance because hydrodynamic interactions, are al-
ways present and, as has been demonstrated, they play an
important role in the structure of the deposited particles. In
fact, the DRSA model predicts that, for particles, in the ab-
sence of any gravitational force, the structure is different
from its RSA counterpart. However, introducing the hydro-
dynamic interactions, one recovers a deposition probability,
as a function of the adhesion position, which follows the
RSA laws @8#. This comes from the fact that, due to the
hydrodynamic interactions, the diffusion coefficient related
to the movement parallel to the deposition plane decreases
more slowly with the plane-particle distance than the diffu-
sion coefficient related to the movement perpendicular to the
plane. The particle can thus ‘‘randomize’’ its position along
the plane before touching it. This is equivalent to the RSA
deposition rule in which the deposition probability is uni-
form all over the available space.

Let us now develop the argument showing that the dimen-
sionless radiusR* given by relation~1! also describes a sys-
tem in which hydrodynamic interactions are present. To this
end, consider a monodisperse system of hard spheres depos-
ited irreversibly on a plane. This system is characterized by a
given structure and by its coverage. In order to determine the
deposition probability for a new incoming particle as a func-
tion of the adhesion probability, two routes can be followed:
the first is based on Langevin’s equation, the second on
Smolukowski’s equation. Both are discussed below.

~1! We can choose a random initial position for the de-
positing particles in a plane parallel to the deposition plane at
a large distance above this plane. We can then follow the
trajectory of this particle by solving, step by step, a Langevin
equation with a diffusion tensor which varies with the rela-
tive position of the depositing particle with respect to the
deposition plane and to the already deposited particles. Once
the particle has touched the surface it is removed from it, and
a new deposition trial is started independently. If such a pro-
cedure is repeated a great number of times, one obtains the
deposition probability. The Langevin equation must be
solved with the constraints that the particles behave like hard
spheres. This is the route which has been followed in the
DRSA case with gravity, taking the hydrodynamic tensor as
a constant scalar given by the usual Stokes-Einstein formula:

Ds5
kT

6phR
, ~2!

whereh represents the viscosity of the medium.
When the diffusion tensor depends upon the position of

the particle, the Langevin equation takes the form@9#

Dr5
D% F

kT
Dt1“•D% Dt1DrB . ~3!

This vectorial equation gives the displacement of the particle
during the time intervalDt. The three terms on the right hand
side represent, respectively, the drift term, the gradient term,
and the stochastic term.D% represents the diffusion tensor,
which reduces to the scalar Stokes-Einstein diffusion coeffi-
cientDs , when the particle diffuses far from walls or other
particles. In that case, obviously, the gradient term vanishes.
The first term on the right hand side contains the sum of all
external forces acting on the particle; in the present study,
this force is simply the gravitational force which is parallel
and opposite to the unit vector of thez axis.

In the particular case of constant diffusion coefficient, Ez-
zeddineet al. @7# have shown that the diffusion of a spherical
particle in a gravitational field is entirely determined by the
reduced radiusR* , defined by Eq.~1!. The same observation
holds for the coverage at the jamming limit. We shall now
show that this conclusion stays true even when the diffusion
is a tensor instead of a scalar, i.e., in the presence of hydro-
dynamic variable drag forces.

Consider first the simplest case of a particle sedimenting
in a liquid and approaching a free horizontal collector@10#.
We have only to consider the modification of the mobility of
the particle due to the presence of the plane. Following
Clark, Lal, and Watson@9# ~see also@11#!, the diffusion ten-
sor is written as

D% 5DsS l i
21

0
0

0
l i

21

0

0
0

l'
21
D , ~4!

whereli and l' account for the effect of the wall on the
diffusion of the particle parallel to it and perpendicular to it,
respectively. These components are functions of the unique
dimensionless variablez/R.

If we split the vectorial equation~3! into three scalar
equations corresponding to the three components of the dis-
placement vectorDr , we obtain

Dx5gxA2Dsl i
21Dt, ~5a!

Dy5gyA2Dsl i
21Dt, ~5b!

Dz5Ds

Fzl'
21

kT
Dt1Ds

]l'
21

]z
Dt1gzA2Dsl'

21Dt.

~5c!

The gradient term does not contribute to thex and y dis-
placements, i.e., the displacements parallel to the adsorbing
plane, since li depends only on z[( ]l i

21/]x)
5(]l i

21/]y)50]. The three components of the stochastic
termDrB are still assumed to be normal~Gaussian! deviates,
with means equal to zero@9#. They are obtained by multiply-
ing normal deviates of zero mean and unit standard devia-
tion, gx , gy , andgz , by the appropriate standard deviations,
that depend onDs and the componentli or l' . Finally, the
drift term appears only in Eq.~5c!, since thez axis coincides
with the vertical~ascending! direction. The vertical projec-
tion of the gravitational force isFz52(4/3)pR3Drg. The
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minus sign accounts simply for the fact that the gravitational
force pulls the particle downward, i.e., tends to reduce its
altitude z. UsingR as the unit of length andR2/Ds as the
unit of time, Eqs.~5a!–~5c! may be recast in the following
form:

Dx85gxA2l i
21Dt8, ~6a!

Dy85gyA2l i
21Dt8, ~6b!

Dz852R* 4l'
21Dt81

]l'
21

]z8
Dt81gzA2l'

21Dt8, ~6c!

where a primed symbol represents a dimensionless spatial or
time step. These equations show that, once the time stepDt8
is chosen, the evolution of the system is completely deter-
mined byR* , exactly as in the case where the drag force was
considered as independent of the particle position, since the
tensor componentsli andl' depend only onz8.

It may be noted that if one considers the sphere-sphere
interaction from the hydrodynamic point of view@12#, the
diffusion tensor again can be written as the product of
Stokes-Einstein diffusion coefficient and a tensor whose el-
ements depend solely on the center-to-center distance of the
two spheres. Here also, the movement can be rescaled using
R as the unit of length, andR2/Ds as the unit of time.

Finally, in order to face the more complicated problem of
a particle diffusing in the vicinity of a collector already par-
tially covered by irreversibly fixed spheres, one may assume
the additivity of the friction tensors@8,13#. Since the separate
tensors depend only on distances that can be expressed as
multiples ofR, their combination is a tensor depending only
on the geometry of the system, provided thatDs has been
factorized everywhere. Then the resulting movement and the
resulting structure of the assembly of particles will display a
universal behavior determined byR* and onlyR* . This de-
pends only on the assumption of additivity for the friction
tensors.

~2! The second route which can be followed is to solve
the Smoluchowski equation corresponding to the diffusion
sedimentation process. One takes the concentration of the
particles constant at a plane parallel to the deposition surface
far above it. The boundary conditions at the interface are the
following: the flux is zero perpendicularly to the deposited
particles~reflecting boundary conditions!, and the concentra-
tion of the particles is zero at the surface~perfectly adsorbing
boundary condition!. By solving the steady state problem,
one can calculate the adsorption flux toward the surface as a
function of the adsorption position and thus evaluate the
deposition probability. The Smoluchowski equation takes the
form

]P

]t
5“•FD% •S“P2P

4pR3Drg

3kT
uzD G , ~7!

whereP is proportional to the concentration of particles at
the positionr , andD% represents the diffusion tensor which
depends also upon the position.uz represents the unit vector
parallel to the gravitational field. The diffusion tensor is re-
lated to the inverse of the friction tensor by the Einstein
relation

D% 5kT~j% !21. ~8!

Again, using the approximation of the additivity of the fric-
tion tensors, approximate formulas can be obtained for the
friction tensor for the whole distance range between the dif-
fusing particle, the fixed particles on the surface, and the
deposition plane. These formulas lead to the Stokes expres-
sion when the diffusing particle is far from the surface, and
include the lubrication theory for diffusing particles near the
deposition plane. The interesting feature that appears out of
these expressions is that the diffusion tensor can be written
in the simple form

D% 5DsF% ~$~r i2r !/R%!, ~9!

where r i2r represents the vector joining the positionr i of
the center of the particlei to the positionr . The tensorF% thus
represents a dimensionless diffusion tensor. It can be noted
that the only characteristic length entering into this problem
is the particle radiusR. One can then rewrite the diffusion
equation~7! in a dimensionless form,

]P

]t8
5“8•FF% S r iR , rRD •S“8P2P

4pR4Drg

3kT
uzD G , ~10!

where¹8 represents the derivative with respect to the re-
scaled variabler /R, andt85Dst/R

2 is the dimensionless re-
scaled time. The same rescaling can be done on the boundary
conditions, which can be exclusively expressed in terms of
the rescaled lengths due to the fact that no additional length
enters the problem. Since the change in the structure due to a
change in coverage can be obtained by solving Eq.~10! in
steady state conditions with the appropriate boundary condi-
tions expressed exclusively in rescaled dimensions, the only
parameter that enters into the problem is the dimensionless
radiusR* given by Eq.~1!. Moreover, the kinetics of the
process is obtained by solving Eq.~10! with the boundary
conditions discussed previously. These boundary conditions
thus only depend on the coverage and the structure of the
interface. This latter, however, is only dependent upon the
coverage and the parameterR* , as just discussed. The depo-
sition kinetics is then obtained by the equation

]P

]t8
5Jz88 ~z850!, ~11!

whereJz88 (z850) corresponds to the rescaled flux to the sur-
face atz850. This rescaled flux is given by

Jz88 ~z850!5K HF% S r iR , rRD •~“8P2PR* 4uz!J
z,z850

L ,
~12!

where the average is taken over the entire surface, and the
symbol $ %z,z850 means that only thez component of this
vector, i.e., the component of the flux perpendicular to the
surface, is taken atz850. The fact that the flux toward the
surface can be rescaled in this way implies that the deposi-
tion kinetics is governed by two parameters: the rescaled
radiusR* and the dimensionless timeR2/Ds .

The two main conclusions that arise from the above
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analysis of sedimentation of Brownian particles and of their
adhesion to an horizontal plane, taking into account hydro-
dynamic interactions with this plane and with preadsorbed
particles, are~i! that the structure of the adsorbed layer, as
for instance quantified by the radial distribution function,
depends only on the reduced radiusR* which contains all

pertinent physical parameters; and~ii ! that the kinetics of the
coverage process depends onR* and also on the ratio
R2/Ds . In other words, the viscosity of the solvent changes
the time necessary to obtain a given coverage, but not the
relative position of the particles at the interface between the
solid and the particle suspension.
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